Spectroscopic evidence of large aspherical <i>β</i>-NAT particles involved in denitrification in the December 2011 Arctic stratosphere

Author:

Woiwode Wolfgang,Höpfner MichaelORCID,Bi Lei,Pitts Michael C.ORCID,Poole Lamont R.,Oelhaf Hermann,Molleker Sergej,Borrmann StephanORCID,Klingebiel Marcus,Belyaev Gennady,Ebersoldt Andreas,Griessbach SabineORCID,Grooß Jens-UweORCID,Gulde Thomas,Krämer MartinaORCID,Maucher Guido,Piesch Christof,Rolf ChristianORCID,Sartorius Christian,Spang ReinholdORCID,Orphal Johannes

Abstract

Abstract. We analyze polar stratospheric cloud (PSC) signatures in airborne MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft) observations in the spectral regions from 725 to 990 and 1150 to 1350 cm−1 under conditions suitable for the existence of nitric acid trihydrate (NAT) above northern Scandinavia on 11 December 2011. The high-resolution infrared limb emission spectra of MIPAS-STR show a characteristic “shoulder-like” signature in the spectral region around 820 cm−1, which is attributed to the ν2 symmetric deformation mode of NO3− in β-NAT. Using radiative transfer calculations involving Mie and T-Matrix methods, the spectral signatures of spherical and aspherical particles are simulated. The simulations are constrained using collocated in situ particle measurements. Simulations assuming highly aspherical spheroids with aspect ratios (AR) of 0.1 or 10.0 and a lognormal particle mode with a mode radius of 4.8 µm reproduce the observed spectra to a high degree. A smaller lognormal mode with a mode radius of 2.0 µm, which is also taken into account, plays only a minor role. Within the scenarios analyzed, the best overall agreement is found for elongated spheroids with AR  =  0.1. Simulations of spherical particles and spheroids with AR  =  0.5 and 2.0 return results very similar to each other and do not allow us to reproduce the signature around 820 cm−1. The observed “shoulder-like” signature is explained by the combination of the absorption/emission and scattering characteristics of large highly aspherical β-NAT particles. The size distribution supported by our results corresponds to ∼ 9 ppbv of gas-phase equivalent HNO3 at the flight altitude of ∼ 18.5 km. The results are compared with the size distributions derived from the in situ observations, a corresponding Chemical Lagrangian Model of the Stratosphere (CLaMS) simulation, and excess gas-phase HNO3 observed in a nitrification layer directly below the observed PSC. The presented results suggest that large highly aspherical β-NAT particles involved in denitrification of the polar stratosphere can be identified by means of passive infrared limb emission measurements.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3