Granular metal–carbon nanocomposites as piezoresistive sensor films – Part 1: Experimental results and morphology
-
Published:2018-01-09
Issue:1
Volume:7
Page:1-11
-
ISSN:2194-878X
-
Container-title:Journal of Sensors and Sensor Systems
-
language:en
-
Short-container-title:J. Sens. Sens. Syst.
Author:
Schultes Günter,Schmid-Engel Hanna,Schwebke Silvan,Werner Ulf
Abstract
Abstract. We have produced granular films based on carbon and different transition metals by means of plasma deposition processes. Some of the films possess an increased strain sensitivity compared to metallic films. They respond to strain almost linearly with gauge factors of up to 30 if strained longitudinally, while in the transverse direction about half of the effect is still measured. In addition, the film's thermal coefficient of resistance is adjustable by the metal concentration. The influence of metal concentration was investigated for the elements Ni, Pd, Fe, Pt, W, and Cr, while the elements Co, Au, Ag, Al, Ti, and Cu were studied briefly. Only Ni and Pd have a pronounced strain sensitivity at 55 ± 5 at. % (atomic percent) of metal, among which Ni–C is far more stable. Two phases are identified by transmission electron microscopy and X-ray diffraction: metal-containing nanocolumns densely packed in a surrounding carbon phase. We differentiate three groups of metals, due to their respective affinity to carbon. It turns out that only nickel has the capability to bond and form a stable and closed encapsulation of GLC around each nanoparticle. In this structure, the electron transport is in part accomplished by tunneling processes across the basal planes of the graphitic encapsulation. Hence, we hold these tunneling processes responsible for the increased gauge factors of Ni–C composites. The other elements are unable to form graphitic encapsulations and thus do not exhibit elevated gauge factors.
Publisher
Copernicus GmbH
Subject
Electrical and Electronic Engineering,Instrumentation
Reference28 articles.
1. Abrasonis, G., Kovács, G. J., Ryves, L., Krause, M., Mücklich, A., Munnik, F., Oates, T. W. H., Bilek, M. M. M., and Möller, W.: Phase separation in carbon-nickel films during hyperthermal ion deposition, J. Appl. Phys., 105, 083518, https://doi.org/10.1063/1.3110187, 2009. 2. Aga, R. S., Fu, C. L., Krcmar, M., and Morris, J. R.: Theoretical investigation of the effect of graphite interlayerspacing on hydrogen absorption, Phys. Rev. B, 76, 165404, https://doi.org/10.1103/PhysRevB.76.165404, 2007. 3. Andersson, M., Högström, J., Urbonaite, S., Furlan, A., Nyholm, L., and Jansson, U.: Deposition and characterization of magnetron sputtered amorphous Cr–C films, Vacuum, 86, 1408–1416, https://doi.org/10.1016/j.vacuum.2012.01.021, 2012. 4. Bayer, B., Bosworth, D., Michaelis, F., Blume, R., Habler, G., Abart, R., Weatherup, R., Kidambi, P., Baumberg, J., Knop-Gericke, A., Schloegl, R., Baehtz, C., Barber, Z., Meyer, J., and Hofmann, S.: In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites, J. Phys. Chem. C, 120, 22571–22584, https://doi.org/10.1021/acs.jpcc.6b01555, 2016. 5. Delhaes, P.: Graphite and Precursors, CRC Press, Amsterdam, the Netherlands, 2000.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|