Laser-Induced Copper/Carbon Nanocomposite from Anodically Electrodeposited Chitosan for H2O2 Sensing

Author:

Zafar Usama12,Rai Prince Kumar3,Gupta Ankur3ORCID,Korvink Jan G.1ORCID,Badilita Vlad1ORCID,Islam Monsur1ORCID

Affiliation:

1. Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

2. Institut für Mikrosystemtechnik (IMTEK), Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany

3. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India

Abstract

This work presents anodically electrodeposited copper (Cu)/chitosan gel as a novel precursor for synthesizing a Cu/carbon nanocomposite through laser-induced carbonization. Metal/carbon nanocomposites offering advantageous properties compared to their individual counterparts stand out in various applications, particularly in those involving electrochemical phenomena. However, their synthesis often suffers from complicated and time-consuming synthesis procedures. Here, we integrate anodic electrodeposition and laser-induced carbonization to yield a rapid, simple, and inexpensive procedure for synthesizing metal/carbon nanocomposite. A precursor composite involving Cu-coordinated chitosan film is achieved through anodic electrodeposition on a copper anode. Irradiation by an infrared laser with optimized parameters results in the thermochemical decomposition of the Cu/chitosan composite, rapidly forming a nanocomposite material featuring highly graphitized and porous carbon materials. Elemental mapping confirms the formation of the nanocomposite, although no crystalline phases of copper are observed during X-ray diffraction. This can be attributed to the rapid nature of the laser-carbonization process. The nanocomposite material is further demonstrated for electrochemical sensing of hydrogen peroxide (H2O2), exhibiting a sensitivity of 2.65 mM−1 for concentrations ranging from 0.01 mM to 0.1 mM H2O2, and 0.01 ± 0.01 mM−1 for concentrations from 0.1 to 10 mM H2O2. These sensitivities are comparable to other non-enzymatic H2O2 biosensors. The finding of this work signifies a rapid and facile method for synthesizing metal/carbon nanocomposites with strong implications for the field of biosensors.

Funder

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made to Order

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3