DETECTION OF ALZHEIMER'S DISEASE FROM ELECTROENCEPHALOGRAPHY (EEG) SIGNALS USING MULTITAPER AND ENSEMBLE LEARNING METHODS

Author:

GÖKER Hanife1ORCID

Affiliation:

1. KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ

Abstract

Alzheimer's disease is a complex brain disease and is also the most common form of dementia that leads to impaired social and intellectual abilities. The disease only manifests itself with a simple forgetfulness, as the disease progresses, the patient forgets the recent events, cannot recognize his family members and close environment, and becomes in need of care in the last stage. Early detection is therefore crucial for medical intervention to prevent brain injury and prolong everyday functioning. In this study is aimed to detection of Alzheimer’s disease from EEG signals using the multitaper and ensemble learning methods. The dataset comprises of 24 healthy people and 24 Alzheimer's patients' EEG signals. 49 features were extracted by calculating the power spectral density (PSD) of the frequencies of the EEG signals between 1-49 Hz using the multitaper method. Then, the performances of AdaboostM1, Total Boost, Gentle Boost, Logit Boost, Robust Boost, and Bagging ensemble learning algorithms were compared. As a result of experiments, the Logit Boost algorithm has the highest performance. The algorithm has achieved a promising performance of 93.04% accuracy, 93.09% f1-score, 92.75% sensitivity, 93.43% precision, and 93.33% specificity.

Publisher

Uludag University Journal of the Faculty of Engineering

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3