Makine Öğrenme Yöntemleri ile EEG Sı̇nyallerı̇nden Alzheimer Hastalığı Tanısı

Author:

ŞENKAYA Yeliz1ORCID,KURNAZ Çetin2ORCID

Affiliation:

1. ORDU ÜNİVERSİTESİ, AKKUŞ MESLEK YÜKSEKOKULU

2. ONDOKUZ MAYIS ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

Alzheimer bilişsel ve nörolojik işlevlerin ilerleyici kaybı olan, insan yaşamını olumsuz yönde etkileyen, geri dönüşümü mümkün olmayan bir tür nörodejeneratif hastalıktır. Hastalığın tedavisi mümkün olmadığından, erken tanı ile ilerleyişi yavaşlatmak büyük önem taşımaktadır. Tanı aşamasının uzun sürmesi tedavinin gecikmesine ve bilişsel, nörolojik kayıpların artmasına sebep olmaktadır. Bu çalışmanın amacı, kayıpların en aza indirgenmesi için Elektroensefalogram (EEG) sinyallerinden Alzheimer hastalığının (AH) tanısını makine öğrenme yöntemleri ile gerçekleştirmektir. Yapılan çalışmada AH’lı 24 kişi ve sağlıklı 24 kişinin EEG sinyalleri %50 örtüşme ile 4 saniyelik epoklara ayrılmıştır. Sinyallerin Bağımsız Bileşen Analizi (ICA) değerleri hesaplanmış ve EEG kanallarından ICA değerlerine göre otomatik gürültü temizle işlemi yapılmıştır. Her bir sinyalin zaman alanından spektral alana geçişi Welch metodu kullanılarak gerçekleştirilmiştir. 1-30 Hz aralığında Welch Spektral analizi ile Güç Spektral Yoğunluğu (PSD) elde edilen sinyallerden 20 adet istatistiksel ve spektral özellik çıkarımı yapılmış ve öznitelik vektörü oluşturulmuştur. Spearman korelasyon katsayısı ile her özelliğin etiket ile korelasyon ilişkisine bakılmış ve eşik değerine göre 9 özellik seçimi yapılarak yeni öznitelik vektörü oluşturulmuştur. Elde edilen öznitelik vektörlerinin %70’i eğitim, %30’u test olarak ayrılmıştır. Makine öğrenme (ML) yöntemlerinden Destek Vektör Makineleri (SVM) ve k-En Yakın Komşu (kNN) yöntemleri 10 kat çapraz doğrulama ile eğitim ve test işlemleri Temel Bileşen Analizi (PCA) uygulanmadan ve uygulanarak gerçekleştirilmiştir. Çıkan sonuçlar doğruluk, duyarlılık, özgüllük, hassasiyet ve F-Skor değerlerine göre karşılaştırılmıştır. AH tanısında en iyi doğruluk oranı 20 özellikten oluşan öznitelik vektörüne PCA uygulanmasıyla %96.59 SVM ile elde edilmiştir.

Publisher

Karadeniz Fen Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3