Explicit solutions to a free interface model for the static/flowing transition in thin granular flows

Author:

Lusso Christelle,Bouchut FrançoisORCID,Ern Alexandre,Mangeney Anne

Abstract

This work is devoted to an analytical description of the dynamics of the static/flowing interface in thin dry granular flows. Our starting point is the asymptotic model derived by Bouchutet al. [Comm. Math. Sci.14(2016) 2101–2126] from a free surface incompressible model with viscoplastic rheology including a Drucker–Prager yield stress. This asymptotic model is based on the thin-layer approximation (the flow is thin in the direction normal to the topography compared to its down-slope extension), but the equations are not depth-averaged. In addition to the velocity, the model includes a free surface at the top of the flow and a free time-dependent static/flowing interface at the bottom. In the present work, we simplify this asymptotic model by decoupling the space coordinates, and keeping only the dependence on time and on the normal space coordinateZ. We introduce a time- andZ-dependent source term, assumed here to be given, which represents the opposite of the net force acting on the flowing material, including gravity, pressure gradient, and internal friction. We prove several properties of the resulting simplified model that has a time- andZ-dependent velocity and a time-dependent static/flowing interface as unknowns. The crucial advantage of this simplified model is that it can provide explicit solutions in the inviscid case, for different shapes of the source term. These explicit inviscid solutions exhibit a rich behaviour and qualitatively reproduce some physical features observed in granular flows.

Funder

Agence Nationale de la Recherche

European Research Council

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3