Abstract
This study deals with higher-order asymptotic equations for the water-waves problem. We considered the higher-order/extended Boussinesq equations over a flat bottom topography in the well-known long wave regime. Providing an existence and uniqueness of solution on a relevant time scale of order 1/√ε and showing that the solution’s behavior is close to the solution of the water waves equations with a better precision corresponding to initial data, the asymptotic model is well-posed in the sense of Hadamard. Then we compared several water waves solitary solutions with respect to the numerical solution of our model. At last, we solve explicitly this model and validate the results numerically.
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献