Equations for small amplitude shallow water waves over small bathymetric variations

Author:

Israwi Samer12,Khalifeh Youssef1,Mitsotakis Dimitrios3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Sciences 1,Lebanese University, Beirut, Lebanon

2. CRAMS: Center for Research in Applied Mathematics and Statistics, Faculty of sciences, AUL, Beirut, Lebanon

3. School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

Abstract

A generalized version of the a b c d -Boussinesq class of systems is derived to accommodate variable bottom topography in two-dimensional space. This extension allows for the conservation of suitable energy functionals in some cases and enables the description of water waves in closed basins with well-justified slip–wall boundary conditions. The derived systems possess a form that ensures their solutions adhere to important principles of physics and mathematics. By demonstrating their consistency with the Euler equations and estimating their approximation error, we establish the validity of these new systems. Their derivation is based on the assumption of small bathymetric variations. With practical applications in mind, we assess the effectiveness of some of these new systems through comparisons with standard benchmarks. The results indicate that the assumptions made during the derivation are not overly restrictive. The applications of the new systems encompass a wide range of scenarios, including the study of tsunamis, tidal waves and waves in ports and lakes.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference54 articles.

1. Principes généraux du moubement des fluides;Euler L;Mémoires,1757

2. Russell J. 1844 Report on waves. In Report of the fourteenth meeting of the British Association for the Advancement of Science, York, UK, 25 October - 2 September 1844. Plates XLVII–LVII, pp. 311-390. London: John Murray.

3. Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire;Boussinesq J;C. R. Acad. Sci. Paris,1871

4. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq J;J. Math. Pures Appl.,1872

5. Well-posedness in Sobolev spaces of the full water wave problem in 2-D

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3