Unified analysis of discontinuous Galerkin and C0-interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations

Author:

Kawecki Ellya L.,Smears IainORCID

Abstract

We provide a unified analysis of a posteriori and a priori error bounds for a broad class of discontinuous Galerkin and C0-IP finite element approximations of fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman and Isaacs equations with Cordes coefficients. We prove the existence and uniqueness of strong solutions in H2 of Isaacs equations with Cordes coefficients posed on bounded convex domains. We then show the reliability and efficiency of computable residual-based error estimators for piecewise polynomial approximations on simplicial meshes in two and three space dimensions. We introduce an abstract framework for the a priori error analysis of a broad family of numerical methods and prove the quasi-optimality of discrete approximations under three key conditions of Lipschitz continuity, discrete consistency and strong monotonicity of the numerical method. Under these conditions, we also prove convergence of the numerical approximations in the small-mesh limit for minimal regularity solutions. We then show that the framework applies to a range of existing numerical methods from the literature, as well as some original variants. A key ingredient of our results is an original analysis of the stabilization terms. As a corollary, we also obtain a generalization of the discrete Miranda–Talenti inequality to piecewise polynomial vector fields.

Funder

Engineering and Physical Sciences Research Council

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference59 articles.

1. Ambrosio L., Fusco N. and Pallara D., Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).

2. Convergence of approximation schemes for fully nonlinear second order equations

3. Blechschmidt J., Herzog R. and Winkler M., Error estimation for second-order PDEs in non-variational form. Preprint arXiv:1909.12676 (2019).

4. Localization of the W-1,q norm for local a posteriori efficiency

5. Some Convergence Results for Howard's Algorithm

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3