Abstract
This paper focusses on the von Kármán equations for the moderately large deformation of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear fourth-order obstacle problem and motivates its nonconforming Morley finite element approximation. The first part establishes the well-posedness of the von Kármán obstacle problem and also discusses the uniqueness of the solution under an a priori and an a posteriori smallness condition on the data. The second part of the article discusses the regularity result of Frehse from 1971 and combines it with the regularity of the solution on a polygonal domain. The third part of the article shows an a priori error estimate for optimal convergence rates for the Morley finite element approximation to the von Kármán obstacle problem for small data. The article concludes with numerical results that illustrates the requirement of smallness assumption on the data for optimal convergence rate.
Subject
Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献