Abstract
Abstract
This paper deals with the numerical approximation of the biharmonic inverse source problem in an abstract setting in which the measurement data is finite-dimensional. This unified framework in particular covers the conforming and nonconforming finite element methods (FEMs). The inverse problem is analysed through the forward problem. Error estimate for the forward solution is derived in an abstract set-up that applies to conforming and Morley nonconforming FEMs. Since the inverse problem is ill-posed, Tikhonov regularization is considered to obtain a stable approximate solution. Error estimate is established for the regularized solution for different regularization schemes. Numerical results that confirm the theoretical results are also presented.
Funder
National Board for Higher Mathematics
Subject
Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献