Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source

Author:

Masri Rami,Shen Boqian,Riviere BeatriceORCID

Abstract

The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results.

Funder

National Science Foundation

Publisher

EDP Sciences

Reference37 articles.

1. Adams R.A. and Fournier J.J.F., Sobolev Spaces. Elsevier (2003).

2. Regularity of solutions of elliptic problems with a curved fracture

3. Local error estimates of the finite element method for an elliptic problem with a Dirac source term

4. Brenner S. and Scott R., The Mathematical Theory of Finite Element Methods. Vol. 15. Springer Science & Business Media (2007).

5. L 2 estimates for the finite element method for the Dirichlet problem with singular data

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discontinuous Galerkin Methods for 3D–1D Systems;SIAM Journal on Numerical Analysis;2024-08-02

2. Discontinuous Galerkin Method for Nonlinear Quasi-Static Poroelasticity Problems;International Journal of Numerical Analysis and Modeling;2024-06

3. Application of the Zenger Correction to an Elliptic PDE with Dirac Source Term;SEMA SIMAI Springer Series;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3