Author:
Qi Xianjun,Zheng Xiwei,Chen Qinghui
Abstract
The accurate forecast of integrated energy loads, which has important practical significance, is the premise of the design, operation, scheduling and management of integrated energy systems. In order to make full use of the coupling characteristics of electricity, cooling and heating loads which is difficult to deal with by traditional methods, this paper proposes a new forecast model of integrated energy system loads based on the combination of convolutional neural network (CNN) and long short term memory (LSTM). Firstly, the Pearson correlation coefficients among the electricity, cooling and heating load series of the integrated energy system are calculated, and the results show that there is a strong coupling relationship between the loads of an integrated energy system. Then, the CNN-LSTM composite model is constructed, and CNN is used to extract the characteristic quantity which reflects the load coupling characteristics of the integrated energy system. Then, the characteristic quantity is converted into the time series input to LSTM, and the excellent time series processing ability of LSTM is used for load forecasting. The results show that the CNN-LSTM composite model proposed in this paper has higher prediction accuracy than the wavelet neural network model, CNN model and LSTM model.
Reference15 articles.
1. Singular Perturbation for the Dynamic Modeling of Integrated Energy Systems
2. Modeling and forecasting of cooling and electricity load demand
3. Heating, cooling, and electrical load forecasting for a large-scale district energy system
4. Vladimir V.M. (2019) Prediction of Heating Load and Cooling Load of Buildings Using Neural Network. International Ural Conference on Electrical Power Engineering. Chelyabinskaya Oblast, Russia. pp. 417–421.
5. Nnamdi I.N. (2017) An artificial neural network model for predicting building heating and cooling loads. International Artificial Intelligence and Data Processing Symposium (IDAP). Malatya, Turkey. pp.17–22.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献