Influence of emitter-receiver number on measurement accuracy in acoustic pyrometry

Author:

Ferrari Lorenzo,Caposciutti Gianluca,Pasini Gianluca,Frate Guido Francesco,Desideri Umberto

Abstract

Acoustic pyrometry is an interesting technique that may find several useful applications in turbomachinery. As the speed of sound is directly related a medium temperature, this measurement technique estimates the temperature of a gas by considering the time of flight of an acoustic wave moving through it. If only an acoustic emitter-receiver couple is used, only the average temperature along the acoustic path can be determined. If multiple emitter-receiver couples laying on the same plane are used, a reconstruction of the temperature map in the section is possible. This estimation is performed by considering that multiple acoustic paths travel across the same sub-portions of the section and, therefore, the temperature of each sub-portion affects the time of flight along several sound paths. Many parameters affect the accuracy of the measurement, and they are related to the physic of the phenomena involved in the measurement, the accuracy of the instrumentation used, the interaction between the acoustic wave and the flow velocity and the hardware set-up. In this study, the impact of some set-up parameters on the accuracy of the measurement was investigated and, in particular, the number of sound emitter-receiver couples and the number of investigation sub-portions in which the section is divided. A reference temperature map has been considered as a benchmark. This study, which is a preliminary investigation on this technique, was useful to assess the capability of this methodology to correctly describe a temperature distribution in an ideal condition. Therefore, it represents a first step in the set-up of an experimental investigation with an acoustic pyrometer..

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic pyrometry for flow velocity estimation: preliminary analysis;Journal of Physics: Conference Series;2023-05-01

2. Time-of-flight estimation in acoustic pyrometry: sensitivity to pulse characteristics;Journal of Physics: Conference Series;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3