Time-of-flight estimation in acoustic pyrometry: sensitivity to pulse characteristics

Author:

Pettinari Matteo,Ferrari Lorenzo

Abstract

Abstract Acoustic pyrometry is a non-intrusive measurement technique that may have several applications in turbomachinery. This methodology estimates the gas temperature by measuring the time of flight of an acoustic wave moving through a medium. It can be accomplished by placing a sound source (emitter) and a set of microphones (receivers) on opposite sides of a section. The emitter generates a sound pulse, and the receivers detect it. Since the emitter-receiver distances are known and fixed, the average temperatures of the paths traversed by the acoustic pulse can be computed by estimating the time-of-flight through deconvolution techniques. However, despite the straightforward principle, an acoustic wave suffers a variation of amplitude when propagating within a medium because of energy losses and ambient noise. Hence, time-of-flight estimation becomes a critical task, especially when considering high-frequency waves or short distances between sensors. It is then fundamental to select proper acoustic waves to maximise the cross-correlation between the signals of the emitter-receiver couples, thus improving the accuracy of the time-of-flight measurements and, consequently, the estimation of the spatial temperature distribution within a specific area. This study is a preliminary investigation, based on a modelling approach, to estimate the impact of different acoustic waves on the accuracy of the time-of-flight measurement. The results of this analysis will be useful to design and setup an acoustic pyrometry application.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic tomography for velocity estimation in high temperature flows;Journal of Physics: Conference Series;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3