Abstract
The current COVID-19 pandemic creates the biggest health and economic challenges to the world. However, not much knowledge is available about this coronavirus, SARS-CoV-2, because of its novelty. Indeed, it necessarily knows the fate of proteins generated by SARS-CoV-2. Anyway, before a large-scale study on proteins from SARS-CoV-2, it would be better to conduct a small-scale study on a well-known protein from influenza A viruses, because both are positive-sense RNA viruses. Thus, we applied a simple method of amino-acid pair probability to analyze 94 neuraminidases of influenza A viruses for better understanding of their fate. The results demonstrate three features of these neuraminidases: (i) the N1 neuraminidases are more susceptible to mutations, which is the current state of the neuraminidases; (ii) the N1 neuraminidases have undergone more mutations in the past, which is the history of the neuraminidases; and (iii) the N1 neuraminidases have a larger potential towards future mutations, which is the future of the neuraminidases. Moreover, our study reveals two clues on the mutation tendency, i.e. the mutations represent a degeneration process, and chickens, ducks and geese are rendered more susceptive to mutation. We hope to apply this approach to study the proteins from SARS-CoV-2 in near future.