Investigation of the Effectiveness of the Method for Recognizing Pre-Emergency Situations at Mining Facilities

Author:

Abu-Abed Fares

Abstract

In previous reports, an analysis of the basic mathematical methods used to solve the pattern recognition problem was carried out. The inappropriateness of applying the Bayesian classification and cluster analysis to solve the problem of recognizing pre-emergency situations in the process of drilling a well is shown. As a mathematical apparatus for solving the problem of determining the current state of an object of research by a given set of features, a pattern recognition method based on an artificial neural network is selected. In this paper, an analysis is made of existing approaches to improving the quality of education aimed at improving the efficiency of its functioning. The results obtained in this paper will improve the quality of work of the previously developed modified algorithm for training the pre-emergency classifier based on the back propagation method, which differs from the classical one by the procedure for finding the global minimum of the error function, and its software implementation has been implemented. The work is an integral part of previously published developments presented in the materials of articles in 2-nd, 3-rd and 4-th International innovative mining symposiums (2017-2019).

Publisher

EDP Sciences

Reference21 articles.

1. Drilling Rig Operation Mode Recognition by an Artificial Neuronet

2. Duda R.O., Hart P.E., Stork D.G., Pattern Classification (Wiley, New York, 2001)

3. Gallant S.I., Neural Network Learning and Expert Systems (MIT Press, Boston, 1993)

4. Rotary Foundation Drilling Rig Safety (OAFS, Paris, 2016)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3