A Comprehensive Prediction Method for Pore Pressure in Abnormally High-Pressure Blocks Based on Machine Learning

Author:

Li Huayang12ORCID,Tan Qiang12,Deng Jingen12,Dong Baohong12,Li Bojia12,Guo Jinlong3,Zhang Shuiliang4,Bai Weizheng5

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102200, China

2. State Key Laboratory of Petroleum Resource & Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

3. Shanghai Quartermaster and Energy Quality Supervision Station, Quartermaster and Energy Quality Supervision Station, Joint Logistics Support Force, Shanghai 200137, China

4. CNOOC Tianjin Branch, Tianjin 300459, China

5. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

In recent years, there has been significant research and practical application of machine learning methods for predicting reservoir pore pressure. However, these studies frequently concentrate solely on reservoir blocks exhibiting normal-pressure conditions. Currently, there exists a scarcity of research addressing the prediction of pore pressure within reservoir blocks characterized by abnormally high pressures. In light of this, the present paper introduces a machine learning-based approach to predict pore pressure within reservoir blocks exhibiting abnormally high pressures. The methodology is demonstrated using the X block as a case study. Initially, the combination of the density–sonic velocity crossplot and the Bowers method is favored for elucidating the overpressure-to-compact mechanism within the X block. The elevated pressure within the lower reservoir is primarily attributed to the pressure generated during hydrocarbon formation. The Bowers method has been chosen to forecast the pore pressure in well X-1. Upon comparison with real pore pressure data, the prediction error is found to be under 5%, thus establishing it as a representative measure of the reservoir’s pore pressure. Intelligent prediction models for pore pressure were developed using the KNN, Extra Trees, Random Forest, and LightGBM algorithms. The models utilized five categories of well logging data, sonic time difference (DT), gamma ray (GR), density (ZDEN), neutron porosity (CNCF), and well diameter (CAL), as input. After training and comparison, the results demonstrate that the LightGBM model exhibits significantly superior performance compared to the other models. Specifically, it achieves R2 values of 0.935 and 0.647 on the training and test sets, respectively. The LightGBM model is employed to predict the pore pressure of two wells neighboring well X-1. Subsequently, the predicted data are juxtaposed with the actual pore pressure measurements to conduct error analysis. The achieved prediction accuracy exceeds 90%. This study delivers a comprehensive analysis of pore pressure prediction within sections exhibiting anomalously high pressure, consequently furnishing scientific insights to facilitate both secure and efficient drilling operations within the X block.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3