Author:
Agati Giuliano,Di Gruttola Francesca,Gabriele Serena,Simone Domenico,Venturini Paolo,Borello Domenico
Abstract
In turbomachinery applications blade fouling represents a main cause of performance degradation. Among the different techniques currently available, online water washing is one of the most effective in removing deposit from the blades. Since this kind of washing is applied when the machine is close to design conditions, injected droplets are strongly accelerated when they reach the rotor blades and the understanding of their interaction with the blades is not straightforward. Moreover, undesirable phenomena like blades erosion or liquid film formation can occur. The present study aims at assessing droplets dragging from the injection system placed at the compressor inlet till the first stage rotor blades, with a focus on droplets impact locations, on the washing process and the associated risk of erosion. 3D numerical simulations of the whole compressor geometry (up to the first rotor stage) are performed by using Ansys Fluent to account for the asymmetric distribution of the sprays around of the machine struts, IGV and rotor blades. The simulations are carried out by adopting the k-ε realizable turbulence model with standard wall functions, coupled with the discretephase model to track injected droplets motion. Droplets-wall interaction is also accounted for by adopting the Stanton-Rutland model which define a droplet impact outcome depending on the impact conditions. The induced erosion is evaluated by adopting an erosion model previously developed by some of the authors and implemented in Fluent through the use of a User Defined Function (UDF). Two sets of simulations are performed, by considering the rotor still and rotating, representative of off-line and on-line water washing conditions, respectively. In the rotating simulation, the Multiple Reference Frame Model is used. The obtained results demonstrate that the washing process differs substantially between the fixed and the rotating case. Moreover, to quantify the water washing effectiveness and the erosion risk, new indices were introduced and computed for the main components of the machine. These indices can be considered as useful prescriptions in the optimization process of water washing systems.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effects of Water-to-Air Mass Ratio on Long-Term Washing Efficiency and Erosion Risk in an Axial Compressor Under Online Washing Conditions;Journal of Turbomachinery;2024-01-16
2. Liquid Film Formation Influence on Erosion Induced in an Axial Compressor Subject to Water Washing;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023
3. Liquid Film Formation Influence on Erosion Induced in an Axial Compressor Subject to Water Washing;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023
4. Liquid film formation: prediction accuracy of different numerical approaches;Journal of Physics: Conference Series;2022-12-01
5. Numerical Prediction of Long-Term Droplet Erosion and Washing Efficiency of Axial Compressors Through the Use of a Discrete Mesh Morphing Approach;Journal of Turbomachinery;2022-10-20