Abstract
Aiming at the problem of disease diagnosis of large-scale crops, this paper combines machine vision and deep learning technology to propose an algorithm for constructing disease recognition by LM_BP neural network. The images of multiple crop leaves are collected, and the collected pictures are cut by image cutting technology, and the data are obtained by the color distance feature extraction method. The data are input into the disease recognition model, the feature weights are set, and the model is repeatedly trained to obtain accurate results. In this model, the research on corn disease shows that the model is simple and easy to implement, and the data are highly reliable.
Reference12 articles.
1. Zhang Liangjun. MATLAB data analysis and mining practice [M]. Beijing: Mechanical Industry Press, 2015, 256 - 278.
2. Li Zongru. Research on Apple Disease Identification Technology Based on Image Analysis [D]. Northwest A&F University, 2010.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献