Hybrid optimized deep quantum neural network in Internet of Things platform using routing algorithm for detecting smart maize leaf disease

Author:

Gunisetti Loshma1ORCID,Koduri Shirin Bhanu2,Jagannathan Veeraraghavan3,Chundru Raja Ramesh4

Affiliation:

1. Department of AI & ML Sri Vasavi Engineering College Tadepalligudem India

2. Department of Computer Science and Engineering Sri Vasavi Engineering College Tadepalligudem India

3. Department of Computer Science and Engineering Shri Vishnu Engineering College for Women Bhimavaram India

4. Department of CSE (Data Science) Vignan Institute of Technology and Science Hyderabad India

Abstract

SummaryThe productivity in the agricultural sector is minimized due to the disease in plants. In general, the ailments that affect plants are identified by the farmers and the losses are minimized, when the diseases are identified early. The early identification of leaf diseases is difficult in the traditional approaches. Hence, in this article, for detecting maize leaf disease, an adaptive competitive shuffled shepherd optimization‐driven deep quantum neural network (adaptive CSSO‐based deep QNN) is implemented. Here, the initial process is the simulation of the IoT nodes and the leaf data are collected. This data are transferred to base station (BS) via the best routes. The optimal routes are identified using the adaptive CCSO algorithm. The adaptive concept, shuffled shepherd optimization algorithm (SSOA) and competitive swarm optimizer (CSO) are merged for forming the adaptive‐CSSO algorithm. The leaf detection is done in the BS and initially, the data is preprocessed using region of interest (ROI). Then, the relevant features are extracted. Finally, the disease in the maize leaf is detected using Deep QNN and the training is done by adaptive CSSO. The devised approach has maximum accuracy of 96.04%, sensitivity of 97.41%, specificity of 94.35%, energy of 0.01 J, and minimum delay of 0.9596 s.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3