Design of coal mine drainage system

Author:

Bargawa Waterman Sulistyana,Sucahyo Agus Panca Adi,Andiani Hesti Farra

Abstract

Research from coal fields show that increased production from coal mines resulted in a wider pit. Changes in the water catchment area resulted in changes in the calculation of mine water volume. Excessive mine water volume affects mining activities. Large amounts of water in the pit causes disruption in excavation and loading and hauling activities. Therefore, the design of mine drainage systems is required. The purpose of the study is to analyse statistically the parameters of the mine drainage system, and to design the mine drainage system; including open drain, sump, and settling pond. The research tools used include the calculation of runoff water discharge that requires statistical analysis for rainfall data processing and the determination of catchment area (CA). The open channel dimension and settling pond design is based on the sump volume calculation. The research area has high rainfall clased for the particle to settle is 30.38 minutes. The percsification, solid percent 2.66 % with settling rate 0.0027 m/s; the time requirentage of theoretically suctioned particle is 83 %, and the settling pond maintenance time that has 4 compartments is 15, 16, 19, and 23 days.

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3