Modeling and simulating dynamics of lithium-ion batteries using block-oriented models with piecewise linear static nonlinearity

Author:

Mykhailenko Oleksii

Abstract

The article deals with the research of the efficiency of modelling the dynamics of voltage change in lithium-ion rechargeable batteries in charging/discharging modes using nonlinear block-oriented systems. Drawing on experimental data, a structural and parametric identification of the Hammerstein, Wiener and Hammerstein-Wiener models with a polynomial structure of the linear dynamic block and piecewise linear static nonlinearities was performed. It has been established that the best modelling accuracy was ensured by using the Hammerstein-Wiener system with a linear model having the 6th order of the numerator and denominator polynomials and an input delay of 3 samples. It showed 15.67% and 6.2% higher accuracy compared to the Wiener and Hammerstein systems, respectively. The application of those models in battery management systems will make it possible to improve the control quality for battery assemblies of solar and wind power plants in the context of the variable nature of the charging/discharging processes due to the variability of weather conditions and fluctuations in power consumption during a 24-hour period. This will ensure a wider introduction of renewable power generation into existing power systems, which is currently the leading way to ensure sustainable development of the energy sector.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3