Monitored conditions in wooden wall plates in relation to mold and wood decaying fungi

Author:

Kvist Hansen Tessa,Feldt Jensen Nickolaj,Møller Eva,Jan de Place Hansen Ernst,Peuhkuri Ruut

Abstract

In historic masonry buildings, wood can be embedded in the walls as storey partition beams, or as supportive wall plates. Half-timbered masonry constructions, or wooden frames, e.g. combined with internal insulation, are other examples of wooden elements. Wood decaying fungi can cause serious damage to wood, which may lose mass and strength, ultimately yielding the risk of collapse. In addition, some fungal species may even be hazardous for occupants. All wood decaying fungi depend on favorable moisture and temperature conditions, although the threshold conditions may vary with various fungal species and types, and state of the wood. To predict the risk of occurrence of wood rot, several models have been developed, however most of these are based on a limited number of experiments, or very specific cases. For these reasons, the applicability of the models to other scenarios (fungal species, wood species) may not be appropriate. Furthermore, another failure mode for wood and moisture, is mold growth, which is initiated at lower moisture levels. An indication of risk of mold growth would indicate problems or risks before the initiation of wood rot. Mold growth does not deteriorate the wood, but is usually equally undesired due to health concerns of occupants. For this reason, there might be places where some mold growth would be acceptable, e.g. embedded beam ends if there is no transfer of air from the moldy area to the indoor air. Therefore, risk of rot could be important. The paper investigates models for mass loss due to wood decay and mold growth based on exposure time to favorable hygrothermal conditions. The investigation is based on inspection of wood samples (wall plates) from a full-scale experimental setup of masonry with embedded wood and monitored conditions, to which the prediction models will be applied. Monitored hygrothermal conditions were implemented in mold and wood decay models, and samples were removed from the test setup. The implemented models yielded high mold index and mass loss, whereas neither mold nor decay was observed in the physical samples. Results indicate that the implemented models, in these cases appear to overestimate the risks of mold and rot in the supportive lath behind the insulation.

Publisher

EDP Sciences

Reference19 articles.

1. Teknologisk Institut, https://www.trae.dk/leksikon/nedbrydning-af-trae/(2019). 3 Koch A.P., Larsen H.J., Munck O., BYG-ERFA, 03 12 19 (2003)

2. Koch A.P., Munck O., Larsen H.J., BYG-ERFA, 03 12 28 (2003)

3. Towards modelling of decay risk of wooden materials

4. Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3