Some aspects of controlling radiant and convective cooling systems

Author:

Arghand Taha,Dalenbäck Jan-Olof,Trüschel Anders,Javed Saqib

Abstract

Designing appropriate control systems for radiant heating and cooling terminals entails an understanding of their dynamic behaviour. This study experimentally investigates the dynamic response of a room with convective and radiant cooling systems. The experiments were performed in a 12.6 m2 large test room outfitted as a single-office room. The main cooling system was radiant ceiling panels which covered 70% of the ceiling area. The thermal performance of the radiant system was compared to that of a fan-coil unit (FCU). The results from the step response test showed that the time constant of the room for the radiant system was shorter than for the convective one, indicating faster changes in room temperature by the radiant system. Furthermore, controlling the FCU with similar control system tuned for ceiling panels increased the hysteresis gap in the room air temperature from 0.4 K to 0.8 K. This indicates that control systems for low-mass radiant systems and convective systems might be applied to each other, but on-site tuning is required to omit the offset (persistent error). In this study, controlling room temperature with ceiling panels did not benefit from using an operative temperature sensor to provide feedback signal to the control system. However, the pump energy use was moderately decreased by 14%.

Publisher

EDP Sciences

Reference22 articles.

1. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment

2. Experimental study of the energy and thermal comfort performance of chilled ceiling panels

3. Akridge J.M., Cleveland J.P., Keebaugh D., Earth-coupled radiant heating and cooling system for hot, humid climates, ASHRAE Trans. 96 (1990).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3