Cooling Thermal Comfort and Efficiency Parameters of Ceiling Panels, Underfloor Cooling, Fan-Assisted Radiators, and Fan Coil

Author:

Võsa Karl-Villem,Ferrantelli AndreaORCID,Kurnitski JarekORCID

Abstract

Climate change has brought a compelling need for cooling living spaces to the attention of researchers as well as construction professionals. The problem of overheating enclosures is now exacerbated in traditionally affected areas and is also affecting countries that were previously less prone to the issue. In this paper, we address measurements of thermal comfort and cooling emission efficiency parameters for different devices: ceiling panels, underfloor cooling, fan-assisted radiators, and fan coil. These devices were tested in low and high cooling capacities of up to 40 W/m2 while also featuring heating dummies to imitate internal heat gains. Air temperatures were measured at different heights, allowing to evaluate the thermal stratification with high accuracy. Thermal comfort differences of the tested systems were quantified by measuring both air velocities and operative temperatures at points of occupancy. In summary, the best-performing cooling devices for the studied cooling applications were the ceiling panels and fan radiators, followed by underfloor cooling, with a limitation of stratification. Because of the strong jet, fan coil units did not achieve thermal comfort within the whole occupied zone. The results can be utilized in future studies for cooling emission efficiency and energy consumption analyses of the different cooling devices.

Funder

European Commission

Estonian Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3