Simplified two-step, cross-sectional approach for coupled heat and moisture transfer modeling of shallow, horizontal, ground-based heat Exchangers

Author:

Oh Hyunjun,Tinjum James M.

Abstract

This study evaluates a two-step, cross-sectional approach for designing shallow, unsaturated, horizontal, ground-based heat exchangers (GHXs). Numerical modeling was conducted for coupled heat and moisture transfer around GHXs under transient climatological conditions through a cooling season. Soil samples were collected in Texas and Wisconsin to measure thermal conductivity dry-out curves and soil-water characteristic curves for use in the modeling. Average daily meteorological data from central Texas was applied for the top boundary condition. Heat generation from the GHX was calculated by total condenser heat rejection from an environmental control unit based on ambient temperatures and unit specifications. In the first step of the modeling, results showed that the fluid temperature through the GHX loop was approximately 43 ºC, and rapid heat and moisture fluxes were observed around the GHX loops. High moisture flux along the upper surface was also observed due to high ambient temperatures that occur during the summer season. Using these results, exiting temperature of the GHX was estimated for the second cross-sectional modeling step. This two-step, cross-sectional modeling approach provides a systematic analysis of coupled heat and moisture transfer around shallow, horizontal, unsaturated GHX loops, thus simplifying high computational effort needed for full three-dimensional modeling of shallow GHX systems.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3