A review on innovative approaches to expansive soil stabilization: Focussing on EPS beads, sand, and jute

Author:

Utkarsh 1,Jain Pradeep Kumar1

Affiliation:

1. Department of Civil Engineering, Maulana Azad National Institute of Technology , Bhopal , 462003 , India

Abstract

Abstract Expansive soils pose major geotechnical challenges due to significant volume changes. This research investigates an innovative stabilization approach using sand, expanded polystyrene (EPS) beads, and jute fibres to enhance the properties of expansive soil. The purpose is to utilize the unique characteristics of these admixtures to restrict swelling potential and improve strength and load-bearing capacity. Experimental testing quantified improvements through parameters like unconfined compressive strength (UCS), swelling pressure, California bearing ratio (CBR), compaction characteristics, and Atterberg limits. Soil samples were prepared with individual and combined admixtures at optimum proportions and extensively tested after proper curing. Quantitative results indicated that including sand, EPS beads, and jute fibres increased the soil’s UCS by 41, 29, and 23%, respectively. The swelling pressure, on the other hand, decreased by 14, 18, and 11%, respectively. Maximum improvements were achieved with combined admixtures: UCS increased by 65%, swelling pressure reduced by 23%, and CBR improved from 5 to 6.5%. Regression analysis indicated a strong correlation (R 2 = 0.96) between admixture proportions and resultant UCS. The key achievements are effective swelling control, a marked increase in shear strength parameters, and synergy between admixtures in enhancing expansive soil properties. This sustainable stabilization method using industrial by-products presents a promising solution for constructing stable civil structures even in problematic expansive soil regions.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3