On the optimal design of sliding rotary vane pump for heavy-duty engine cooling systems

Author:

Fatigati Fabio,Di Battista Davide,Di Bartolomeo Marco,Mariani Luigi,Cipollone Roberto

Abstract

Presently the on-the-road transportation sector is responsible of the 21% of the whole CO2 amount emitted into atmosphere. This pushes the International Governments and Organizations to provide strict limitations in terms of ICEs emissions, also introducing fees payment for the car manufacturers. The vehicle electrification allows certainly to meet these requirements, but the higher cost and the need of a green electricity still limit a widespread diffusion among all social classes. Thus, the technological improvement of internal combustion engine plays a key role in the transition period. Among these technologies, the engine thermal management allows to achieve a good compromise between the CO2 emission reduction and related costs. It was demonstrated that replacing the conventional centrifugal pump of engine cooling system with a sliding vane rotary pump (SVRP), important benefits in terms of CO2 emission reduction can be achieved as centrifugal pump efficiency decreases significantly when the engine works far from the maximum load (i.e. design point of the pump). Nevertheless, the complex thermo-fluid-dynamic phenomena taking place inside a SVRP make its design not immediate, particularly if heavy duty ICE cooling systems are considered. These applications indeed are challenging due to the wide operating range and the huge flow rates which pump must deliver. These operating requirements make difficult the choice of the main design parameters: among the different ones, the pump revolution speed and displaced volume. In the present paper a design strategy is developed for this type of pumps based on a comprehensive mathematical model of the processes occurring, predicting volumetric, indicated and mechanical efficiencies. The model was validated with a wide experimental activity so acting as virtual development platform. The results show how the best global efficiency (0.59) is achieved adopting a dual axial intake port configuration, with a suitable choice result of a trade-off between displaced volume and revolution speed. The analysis also show that the pump keeps its efficiency close to the design one for a wide operating range which is particularly suitable for the cooling of an ICE.

Publisher

EDP Sciences

Reference22 articles.

1. EEA, “Carbon dioxide emissions from Europe ’ s heavy-duty vehicles,” 2018.

2. EU, Regulation (EU) 2019/1242 of the European Parliament and of the Council of 20 June 2019 Setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European Parliament, vol. L198, no. April. 2019, pp. 202–240.

3. Li W., Li E., Shi W., Li W., and Xu X., “Numerical simulation of cavitation performance in engine cooling water pump based on a corrected cavitation model,” Processes, vol. 8, no. 3, 2020.

4. Li W., Zhao X., Li W., Shi W., Ji L., and Zhou L., “Numerical Prediction and Performance Experiment in an Engine Cooling Water Pump with Different Blade Outlet Widths,” Math. Probl. Eng., vol. 2017, 2017.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3