Numerical Simulation of Cavitation Performance in Engine Cooling Water Pump Based on a Corrected Cavitation Model

Author:

Li WeiORCID,Li Enda,Shi Weidong,Li Weiqiang,Xu Xiwei

Abstract

To analyze the internal flow of the engine cooling water pump (ECWP) under thermodynamic effect, Zwart cavitation model based on the Rayleigh-Plesset equation is corrected, and NACA0015 hydrofoil was selected to verify the corrected model. The cavitation performances of ECWP with different temperatures were numerically simulated based on a corrected cavitation model. Research results show that simulation values of pressure distribution coefficient in hydrofoil surface at 70 °C are in closest agreement with experimental values when the evaporation and condensation coefficients are 10 and 0.002, respectively. With the decrease of absolute pressure in pump inlet, bubbles firstly occurred at the blade inlet side near the suction surface and then gradually extended to the pressure surface, finally clogged the impeller passage. Compared to the inlet section, the cavitation degree is much more serious close to the trailing edge. With the temperature increases, the cavitation in ECWP occurs in advance and rapidly, and the temperature plays an important role in promoting cavitation process in ECWP. Based on the unsteady simulation of ECWP, the influence of cavitation on the performance characteristics is studied. The results provide a theoretical reference for the prediction and optimization of the cavitation performance in ECWP.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. A review of engine cooling water pump;Li;J. Drain. Irrig. Mach. Eng.,2016

2. Effects of impeller geometry parameters on fracture cavitation performance of centrifugal pump;Kang;J. Drain. Irrig. Mach. Eng.,2018

3. Research Progress of Cooling System for Modern Vehicle Engine;Cheng;Veh. Engine,2008

4. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil

5. Effect of inducer inlet hub ratio on suction performance of centrifugal pumps;Chen;J. Drain. Irrig. Mach. Eng.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3