Real time estimation of emissions in a diesel vehicle with neural networks

Author:

Donateo Teresa,Filomena Riccardo

Abstract

Several studies in literature have shown how real-world emissions strongly depend on driving condition, driving style, ambient temperature and humidity, etc. so that they are significantly different from the values measured on test benches over standard driving cycles. This concern, together with the so-called Diesel-gate, has caused the introduction in Europe of an innovative procedure for the registration of vehicle based on real driving emissions (RDE) measured with a portable emission measurement system (PEMS). PEMS devices are bulky and very expensive, therefore they cannot be extensively for an actual real time monitoring of emissions. To solve this problem, the present work proposes a Neural Network model based on the interpolation of the time-histories of driving conditions (speed, altitude, ambient temperature, humidity and pressure) and emissions measured on a diesel start-and-stop vehicle while performing a series of RDE tests. Two different approaches are proposed. The first one calculates the emissions on the basis of the vehicle motion (speed and altitude profile, ambient conditions). The second one models the engine block using as input the ambient conditions, the load and the rpm of the engine as derived from the OBD-II scanner. The output of both models are the flow rates and cumulated values of CO2 and NOx. Note that the inputs of the two models are signal that can easily obtained on-board without additional sensors.

Publisher

EDP Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel method for real driving emission prediction utilizing an artificial neural network;Engineering Applications of Artificial Intelligence;2024-11

2. An experimental assessment of simultaneous reduction in vehicle tailpipe emissions employing desirability function analysis;Cleaner Engineering and Technology;2024-04

3. AI-Based Virtual Sensing of Gaseous Pollutant Emissions at the Tailpipe of a High-Performance Vehicle;SAE International Journal of Engines;2024-01-09

4. An Enhanced Light Gradient Boosting Regressor for Virtual Sensing of CO, HC and NOx;2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive);2023-06-28

5. NEMO: Internet of Things based Real-time Noise and Emissions MOnitoring System for Smart Cities;2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM);2022-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3