Composition of organic matter in peat soils of the northern trans-Urals depending on groundwater level

Author:

Iglovikov Anatoly,Motorin Alexander

Abstract

The paper presents the results of lysometric studies of the composition of organic matter of peat soils depending on the level of groundwater occurrence. It is established that the amount of bitumen in the arable layer (0.2 m) of medium-power peat soil at 0.5 m ground water level (UGV) is less by 1.65 % than at the depth of 1.0 m and by 4.34 % at 1.5 m. There is no specific dependence on the UHW downstream of the soil profile. The increase of groundwater depth from 0.5 to 1.5 m reduces the amount of water-soluble and easily hydrolyzed substances in the arable layer at 100 °C from 5.68 to 4.48 %. At the groundwater level of 0.5 m, the maximum presence (34.25 %) of substances hydrolysable by 2 % HCl was determined, which is 3.4–3.8 % higher than at 1–1.5 m. The maximum amount of humic acids in peat soil (32.05 %) is set at 0.5 m CKD. In the arable layer, the excess is 4.5 % in comparison with one and a half meters of groundwater. The amount of fulvic acids practically does not depend on the groundwater table and is within the range of 17.7–17.9 %. With the same botanical composition of peat, the increase in the depth of groundwater occurrence from 0.5 to 1.5 m reduces the content of hard-tohydrolyze 80 % of H2SO4 substances in the arable layer from 2.82 to 2.31 %. The number of compounds difficult to hydrolyze with acid is represented by 46–52 % cellulose and does not depend on the level of groundwater. The presence of lignin in peat is several times higher than the cellulose content. There is a dependence of decrease in the lignin content at increase in depth of occurrence of ground waters from 0.5 m (6.63 %) to 1.5 m (5.23 %).

Publisher

EDP Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3