Study on Fuel Utilization Dynamic model of a SOFC-GT Hybrid System Based on Deep Learning Technique

Author:

Chen Jinwei,Chen Yao,Zhang Huisheng

Abstract

In order to perform operation management tasks, including state monitoring and control strategy optimization, of a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system, a data-driven dynamic model based on deep learning technique of long short term memory (LSTM) network is developed to predict the behaviours of fuel utilization. In addition, a LSTM model with unsupervised deep auto-encoder (DAE) method was developed to extract the feature from input data. The comparison performance between the common LSTM model and DAE-LSTM model was investigated. The results show that the DAE-LSTM model can enhance the prediction performance. Moreover, the effect of data size was investigated. The results demonstrate that the unsupervised DAE-LSTM model trained by large data size can further improve the prediction performance. The maximum error is only 0.00529, and average error decreases to 0.00025. In conclusions, the unsupervised DAE-LSTM model is an effective approach to predict dynamic behaviours.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3