Charge-Controller Optimization on Lead-Acid Battery in Solar PV Systems: Temperature Effects and Efficiency Improvement

Author:

Fai Yenku Clearance,Fendji Marie-Danielle,Fopah-Lele Armand,Tsuanyo David

Abstract

Long-term cell performance is very sensitive to the cell operating temperature, and cell storage capacity can degrade quickly, if the temperature is not maintained within a narrow range (25–50 °C) during charging and discharging of (solar) batteries [1]. Efforts are recently being dedicated to developing models that seek to provide insights into that issue. However, not all models consider the operation of the photovoltaic (PV) battery storage system with regard to battery optimization and temperature effects. The present work provides a controllable algorithm to help charge controllers provide exact amount of PV electricity (charge equalization) to batteries with temperature compensation included, and a proposed charging and discharging schedules of the battery storage. The temperature compensated duty cycle for charging is modelled and the pulse-width modulation (PWM) signal is programmed to change with temperature following this duty cycle model. This research work is based on the optimization of solar battery storage where the micro controller-based charge controller enhances battery life by monitoring the temperature and controlling charging voltages and float charging voltages for specific temperatures. A buck converter was simulated in Proteus, and then realized in the laboratory. The duty cycle of the buck converter was adjusted with temperature. Results collected from lab experiments were plotted on MatLab and it shows homogeneity with calculated results. Moreover, battery-charging currents, battery direct current (DC) disconnect and battery switching for charging and discharging were performed for the converter. Future work is to extend this study to large-scale solar photovoltaic systems in order to overcome the operation limits encountered.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3