Abstract
This article presents the design of an innovative photovoltaic solar regulator equipped with a neural MPPT (Maximum Power Point Tracking) control and an advanced battery charge and discharge management algorithm. The main objective of this research is to significantly improve the efficiency of solar energy conversion into electrical energy by optimizing the maximum power point and effectively regulating battery charging and discharging. The neural MPPT control represents a major advancement in the field of solar energy. Unlike conventional algorithms, this approach enables the regulator to adapt to environmental variations, such as fluctuations in sunlight. As a result, the regulator can constantly adjust the maximum power point, ensuring a high efficiency of the solar system. The battery charge and discharge management algorithm is a crucial element in the regulator's design. Effective battery management is essential to maintain a balance between solar energy supply and electrical equipment consumption. Through this algorithm, the battery is kept within optimal charge ranges, thereby avoiding overcharging or excessive discharging, which contributes to prolonging its lifespan. To evaluate the performance of the proposed photovoltaic solar regulator, detailed simulations were conducted using the Matlab/Simulink software. The obtained results confirmed a significant improvement in solar energy conversion efficiency. The combination of the neural MPPT control and the battery management algorithm allows the system to operate optimally, even under changing environmental conditions. The practical applications of this research are diverse. This enhanced solar regulator could be deployed in remote regions without access to the traditional power grid. It also provides an effective solution for rural or isolated areas where solar energy can be a viable energy source, but intelligent management is required to ensure stable electrical supply. In conclusion, this study presents a significant advancement in the field of photovoltaic solar energy, combining a novel neural MPPT control with an advanced battery management algorithm. The simulation results clearly demonstrate a substantial improvement in solar energy conversion efficiency and more efficient battery management. This regulator opens up new possibilities for the utilization of solar energy in various demanding environments, offering a promising solution for powering remote or off-grid areas.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science