Revolutionizing Solar Energy Conversion: A Neural MPPT-Controlled Photovoltaic Regulator

Author:

Gueye IbrahimaORCID, ,Kebe AbdoulayeORCID,Dia OumarORCID,Diop MosstaphaORCID, , ,

Abstract

This article presents the design of an innovative photovoltaic solar regulator equipped with a neural MPPT (Maximum Power Point Tracking) control and an advanced battery charge and discharge management algorithm. The main objective of this research is to significantly improve the efficiency of solar energy conversion into electrical energy by optimizing the maximum power point and effectively regulating battery charging and discharging. The neural MPPT control represents a major advancement in the field of solar energy. Unlike conventional algorithms, this approach enables the regulator to adapt to environmental variations, such as fluctuations in sunlight. As a result, the regulator can constantly adjust the maximum power point, ensuring a high efficiency of the solar system. The battery charge and discharge management algorithm is a crucial element in the regulator's design. Effective battery management is essential to maintain a balance between solar energy supply and electrical equipment consumption. Through this algorithm, the battery is kept within optimal charge ranges, thereby avoiding overcharging or excessive discharging, which contributes to prolonging its lifespan. To evaluate the performance of the proposed photovoltaic solar regulator, detailed simulations were conducted using the Matlab/Simulink software. The obtained results confirmed a significant improvement in solar energy conversion efficiency. The combination of the neural MPPT control and the battery management algorithm allows the system to operate optimally, even under changing environmental conditions. The practical applications of this research are diverse. This enhanced solar regulator could be deployed in remote regions without access to the traditional power grid. It also provides an effective solution for rural or isolated areas where solar energy can be a viable energy source, but intelligent management is required to ensure stable electrical supply. In conclusion, this study presents a significant advancement in the field of photovoltaic solar energy, combining a novel neural MPPT control with an advanced battery management algorithm. The simulation results clearly demonstrate a substantial improvement in solar energy conversion efficiency and more efficient battery management. This regulator opens up new possibilities for the utilization of solar energy in various demanding environments, offering a promising solution for powering remote or off-grid areas.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3