Research on the purification mechanism of heavy metal pollution by biochar composites driven by degree learning

Author:

Dai Anran,Jia Luxia,Zhan Aoli,Zhang Xiuze

Abstract

This paper proposes an innovative approach by integrating deep learning technology, specifically employing the GRU recurrent neural network model based on the Seagull optimization algorithm, to enhance the accuracy of predicting biochar performance. The Seagull optimization algorithm, inspired by seagull predatory behavior, is adept at efficiently identifying optimal model parameters, thereby improving the model’s generalization ability and robustness. The GRU recurrent neural network, designed for sequence data processing, proves to be instrumental in capturing dynamic and nonlinear interactions between biochar and heavy metals. This, in turn, contributes to heightened prediction accuracy and model interpretability. The article unfolds in a structured manner, beginning with an introduction to the biochar preparation method and its characteristics. It then delves into an analysis of the sources and hazards of heavy metal pollution. Following this, the paper explains the principles and advantages of deep learning technology, providing a comprehensive foundation for the subsequent discussion. The construction and verification process of the proposed model is then detailed, concluding with the presentation of experimental results and in-depth analysis. In essence, this research introduces a pioneering idea and methodology for optimizing biochar design and effectively controlling heavy metal pollution, presenting a fresh perspective on addressing these environmental challenges.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Arithmetic Optimization Algorithm with Transfer Learning based Arabic Sign Language Identification System;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3