Demand Prediction of Shared Bicycles Based on Graph Convolutional Network-Gated Recurrent Unit-Attention Mechanism

Author:

Xu Jian-You1ORCID,Qian Yan1,Zhang Shuo1ORCID,Wu Chin-Chia2ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. Department of Statistics, Feng Chia University, Taichung 40724, Taiwan

Abstract

Shared bicycles provide a green, environmentally friendly, and healthy mode of transportation that effectively addresses the “final mile” problem in urban travel. However, the uneven distribution of bicycles and the imbalance of user demand can significantly impact user experience and bicycle usage efficiency, which makes it necessary to predict bicycle demand. In this paper, we propose a novel shared-bicycle demand prediction method based on station clustering. First, to address the challenge of capturing patterns in station-level bicycle demand, which exhibits significant fluctuations, we employ a clustering method that combines graph information from the bicycle transfer graph and potential energy. This method aggregates closely related stations into corresponding prediction regions. Second, we use the GCN-CRU-AM (Graph Convolutional Network-Gated Recurrent Unit-Attention Mechanism) model to predict bicycle demand in each region. This model extracts the spatial information and correlation between regions, integrates time feature data and local weather data, and assigns weights to the input features. Finally, experimental results based on the data from Citi Bike System in New York City demonstrate that the proposed model achieves a more accurate demand prediction.

Funder

National Natural Science Foundation of China

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3