Design and Implementation of a Smart Solar Irrigation System Using IoT and Machine Learning

Author:

B. Anitha,P. Jeyakani,V. Mahalakshmi,Shalini S.,R. Senthil kumar

Abstract

Water scarcity is a major challenge in the agriculture industry, and traditional irrigation methods are often wasteful and inefficient. To address this challenge, a smart solar irrigation system that uses loT and Artificial Neural Network (ANN) algorithms can optimize water usage for agriculture. The system can provide automated irrigation, improve crop yields, and reduce water consumption. This paper proposes a design and implementation methodology of a smart solar irrigation system using loT and ANN algorithms. The system includes solar panels, a water pump, a water storage tank, sensors, loT devices, and ANN algorithms. The system is designed to automate the irrigation process by controlling the water pump based on the data collected from the sensors.

Publisher

EDP Sciences

Subject

General Medicine

Reference19 articles.

1. Abas N., Aziz M. H., Ahmad A. H., Rahman M. A., and Islam M. R., 2021 IEEE 6th International Con on Industrial Engineering and Applications (ICIEA), (2021). 2.

2. Shah S. A., Jantti R. J., and Walraven J. C., 2021 IEEE International Con on Sustainable Energy Technologies (ICSET), (2021).

3. Truong N. N., Nguyen V. D., Hoang V. T., and Nguyen D. D., 2021 IEEE 12th International Con on Intelligent Systems, Modelling and Simulation (ISMS), (2021).

4. Zhao J. T., Huang M. J., and Chen M. F., 2021 IEEE 5th International Con on Control, Automation and Robotics (ICCAR), (2021).

5. Alnaimi H. M., Al-Rizzo H. A., and Al-Rizzo R.K., 2021 IEEE 4th International Con on Artificial Intelligence and Machine Learning Applications (AIMLA), (2021).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3