Development of Deep Stall Landing System for Fixed-Wing Aircraft using Image Processing

Author:

Sathitwattanasan Ekarat,Thipyopas Chinnapat

Abstract

Currently, Unmanned Aerial Vehicle (UAV) plays a huge role, especially fixed-wing UAVs that can be used for various missions such as wide area survey work. It can also carry heavy loads over a long distance. And use less power. However, this type of UAV requires a relatively large runway or landing area. If the landing is used as a net landing, it will need a lot of space to install a net anyway. On the other hand, if using a multirotor UAV or Hybrid model (tilt-wing) that uses less space for take-off and landing. Nevertheless, there will be a limit on speed. If the wind is strong, it will not be able to fly and unable to carry enough load. Therefore, the organizers have foreseen the problem and fix the take-off and landing of fixed-wing UAV by using hand launch method for take-off while landing will use deep stall landing (GPS + Camera) that uses GPS to determine the radius zone 25 meters from the target to land in the start deep stall, in which this landing method will nose up until the angle of attack (AOA) is enough rates to cause the fixed-wing to lose lifting force and land at the specified point using camera to detect landing targets and adjusting the control surface on the fixed-wing elevator to land as close as possible to the specified point. It must be able to land closer to the target than using GPS or the pilot only. The results revealed that GPS landings had an average radius between the landing point and the target being 15.59 m. Pilot landings had an average radius between the landing point and the target being 14.71 m and GPS + Camera landing had an average the radius between the landing point and the target being 7.22 m. If the landing distance is calculated only the longitudinal axis, so GPS landing distance was 13.1 m. Pilot landing was 8.7 m and the GPS + Camera landing was 5.37 m. Furthermore, deep stall landing (GPS + Camera) can land closer than using GPS and pilot only.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3