Author:
Belyakov Mikhail,Sokolova Elena,Listratenkova Valentina,Ruzanova Nina,Kashko Leonid
Abstract
The development of technology for objectively determining the ripeness of plant seeds is an urgent task of modern agricultural production. An alternative to existing methods is optical photoluminescent technology, which is characterized by high accuracy, selectivity, expressiveness, as well as being remote and non-destructive. The spectral characteristics of excitation and photoluminescence of wheat, oat, and corn seeds during their maturation were measured using a spectrofluorometer using a previously developed technique. It was found that during maturation, the short-wave component of the excitation spectra decreases (λs=362 nm) and the long-wave component increases (λl=485 nm). After measuring the luminescence spectra, the integral photoluminescence fluxes for long-wave and short-wave excitation, as well as their ratio, were determined. We have obtained statistically reliable linear regression models of the dependence of long-wave and short-wave photoluminescence flows on the maturation time. Based on the obtained dependencies, a technology was developed for determining the degree of physiological maturation and making decisions about harvesting ripe seeds. It includes sample preparation, excitation and registration of luminescent radiation, amplification of the received signals and their relations, obtaining information about the degree of ripeness taking into account a priori dependencies.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献