Modeling and optimization of the parameters of the heat accumulator of the combined livestock-heliogreenhouse complex

Author:

Ergashev Shakhriyor,Faiziev Tulkun,Yakhshiboev Shukhrat,Fayzullaev Ikhtiyor

Abstract

In the article, the heat exchange process in the water tank battery, which acts as a wall between the livestock building and the solar greenhouse, is studied. The division consists of parallelepiped-shaped tanks, between which the coefficients of heat transfer in charge and discharge mode are determined, taking into account the different temperatures and speeds of the air in the livestock building through the air-moving corridors. A mathematical model of the temperature regime was developed based on the balance equation of the water tank accumulator. The geometric dimensions of the water tank accumulators are optimized based on the criterion equations. A computer model was created using the COMSOL Multiphysics software tool and thermal efficiencies were determined. Based on the results of the conducted research and numerical calculations, it is based on the high heat exchange and energy efficiency when the size of the water tank accumulator is 40x60x25 cm.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3