Author:
H Sittadewi Euthalia,G Tejakusuma Iwan,Handayani Titin,Tohari Adrin,Lailati Masfiro,Zakaria Zulfiadi,Fakhrus Shomim Achmad,Mulyono Asep
Abstract
Critical lands are formed after landslides due to the erosion and stripping of the surface soil in the depletion zone and the formation of accumulation zones, requiring remediation efforts. Indigenous arbuscular mycorrhizal fungi help rehabilitate degraded lands, including post-landslide sites, by adapting to native soil conditions. This study investigates mycorrhiza’s presence in post-landslide areas with sandy silt in Cililin and clayey silt in Citatah. Soil samples are collected at 30 cm depth using a corer near Dysoxylum macrocarpum in Citatah and Gmelina arborea in Cililin. Mycorrhiza isolation involves wet sieving and centrifugation. Local mycorrhiza genera identified are Glomus, Gigaspora, Acaulospora, and Scutellospora. Sandy silt soil 2 exhibits the highest spore density of 178 per 100 grams, while clayey silt soil 1 has the lowest density of 148 per 100 grams. Glomus dominates in sandy silt with a 93 per 100 grams concentration and a 38–45 µm size. Scutellospora is scarce in clayey silt, with only 1 per 100 grams, 90-170 µm size. Isolated mycorrhiza can serve as compatible and adaptive inoculum. The discovery of mycorrhiza tolerant to post-landslide conditions is expected to play an important role in the remediation process of critical lands caused by landslides.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献