Impact of coherent light on interaction of fungi and bacteria cells cultivated in vitro

Author:

Budagovsky Andrey V.,Maslova Marina V.,Budagovskaya Olga. N.,Grosheva Ekaterina V.

Abstract

This article considers impact of coherent red quasi-monochromatic light on interaction of colonies of the Pseudomonas syringae bacteria and the Fusarium macroceras fungus in an in vitro culture. A helium-neon laser and a heat source with a system of light filters and aperture diaphragms were used for irradiation. Two light fluxes were obtained with energy parameters close in magnitude, but significantly different in spatio-temporal coherence. Light with a high statistical ordering stimulated growth of both colonies. Irradiation from the same spectral range and intensity, but with low spatial coherence, increased the functional activity of only small bacteria cells. As a result, there was a suppression of larger fungal cells development that were interacting with them. Therefore, it was the statistical (coherent) properties of light that affected the change in the equilibrium of microorganisms in an artificial biocenosis. This approach can be used in practice for increasing the activity of bacteria antagonists of pathogenic fungi and the non-chemical disease protection of plants.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3