Author:
Salikhanova D.S.,Abdikamalova A.B.,Ismoilova M.A.,Sagdullayeva D.S.,Saidkhonova Sh.A.
Abstract
In this article, the influence of ultrasonic and mechanical dispersion on the viscosity characteristics of water-oil emulsions was studied. It was found that an increase in the duration of exposure to ultrasound leads to an increase in temperature as a result of intensive dispersed system mixing. Due to this, there is an intensification of the interaction between the particles, dispersion, and coagulation. The analysis of the results allowed to determine the optimal ratio between the time of ultrasonic exposure and the emulsifier concentration to obtain an emulsion with low viscosity and a dispersion range. Ultrasonic dispersion promotes the formation of fine particles and a wider polydispersity, which improves emulsion viscoelastic parameters and density. It was found that ultrasonic treatment for 80-120 seconds enhances the nanoscale effect, reducing the emulsion dynamic viscosity. These results are of significant importance for the control and optimization of the viscosity properties of emulsions in various industrial fields, including the food industry.