Global challenges of students dropout: A prediction model development using machine learning algorithms on higher education datasets

Author:

Amare Meseret Yihun,Simonova Stanislava

Abstract

Research background: In this era of globalization, data growth in research and educational communities have shown an increase in analysis accuracy, benefits dropout detection, academic status prediction, and trend analysis. However, the analysis accuracy is low when the quality of educational data is incomplete. Moreover, the current approaches on dropout prediction cannot utilize available sources. Purpose of the article: This article aims to develop a prediction model for students’ dropout prediction using machine learning techniques. Methods: The study used machine learning methods to identify early dropouts of students during their study. The performance of different machine learning methods was evaluated using accuracy, precision, support, and f-score methods. The algorithm that best suits the datasets for these performance measurements was used to create the best prediction model. Findings & value added: This study contributes to tackling the current global challenges of student dropouts from their study. The developed prediction model allows higher education institutions to target students who are likely to dropout and intervene timely to improve retention rates and quality of education. It can also help the institutions to plan resources in advance for the coming academic semester and allocate it appropriately. Generally, the learning analytics prediction model would allow higher education institutions to target students who are likely to dropout and intervene timely to improve retention rates and quality of education.

Publisher

EDP Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3