Study of a Multi-modal Neurorobotic Prosthetic Arm Control System based on Recurrent Spiking Neural Network

Author:

Ikechukwu Ogbodo Mark,Dang Khanh N.,Ben Abdallah Abderazek

Abstract

The use of robotic arms in various fields of human endeavor has increased over the years, and with recent advancements in artificial intelligence enabled by deep learning, they are increasingly being employed in medical applications like assistive robots for paralyzed patients with neurological disorders, welfare robots for the elderly, and prosthesis for amputees. However, robot arms tailored towards such applications are resource-constrained. As a result, deep learning with conventional artificial neural network (ANN) which is often run on GPU with high computational complexity and high power consumption cannot be handled by them. Neuromorphic processors, on the other hand, leverage spiking neural network (SNN) which has been shown to be less computationally complex and consume less power, making them suitable for such applications. Also, most robot arms unlike living agents that combine different sensory data to accurately perform a complex task, use uni-modal data which affects their accuracy. Conversely, multi-modal sensory data has been demonstrated to reach high accuracy and can be employed to achieve high accuracy in such robot arms. This paper presents the study of a multi-modal neurorobotic prosthetic arm control system based on recurrent spiking neural network. The robot arm control system uses multi-modal sensory data from visual (camera) and electromyography sensors, together with spike-based data processing on our previously proposed R-NASH neuromorphic processor to achieve robust accurate control of a robot arm with low power. The evaluation result using both uni-modal and multi-modal input data show that the multi-modal input achieves a more robust performance at 87%, compared to the uni-modal.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3