On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid

Author:

Abdelsalam Sara I.ORCID,Zaher A.Z.

Abstract

The goal of this research is to conduct a theoretical investigation about the effect of the electroosmotic forces on the swimming of sperms throughout the cervical canal. To imitate male semen with self-propulsive spermatozoa, a hyperbolic tangent fluid is used as the base liquid. Swimming sperms move inside a ciliated cervical canal and peristalsis occurs due to the ciliated walls. The perturbation method is used to solve the controlling partial differential set of equations analytically. Due to selfpropulsion of swimmers and long wavelength assumption, a creeping flow protocol is used throughout the stream. The stream pattern, velocity distribution, and pressure gradient (above and below the swimming sheet) solutions are produced and displayed with the relevant parameters. The outcomes of this manuscript show that the rheological parameters of hyperbolic tangent fluid are more appropriate to simulate and discuss the motility of cervical fluid. Moreover, the motility of mucus velocity is more applicable for small values of power law index n at the upper swimming sheet of propulsive spermatozoa. In addition, the mucus velocity increases in both region (upper and lower region of swimming sheet) with an increase of the electroosmotic parameter me and Helmholtz-Smoluchowski velocity UHS. The present analysis provides a mathematical assessment to the swimmers’ interaction through the ciliated genital tract where the embryo is affected by the interaction of ciliary activity.

Funder

Fundación Mujeres por África

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3