Unsteady non-Newtonian fluid flow past an oscillating vertical plate with temperature-dependent viscosity: A numerical study

Author:

Salahuddin T.1,Awais Muhammad1ORCID,Muhammad Shah2ORCID

Affiliation:

1. Department of Mathematics, Mirpur University of Sience and Technology, 10250, Pakistan

2. Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

The analysis of non-Newtonian fluid flow over an oscillating surface often involves numerical simulations and experimental investigations. Computational fluid dynamics method including finite difference or finite element techniques can be used to crack the governing equations of the fluid flow. In this work, we used the Crank–Nicolson numerical technique to analyze the numerical behavior of unsteady boundary layer flow of Casson fluid with natural convection past an oscillating vertical plate. The temperature-dependent viscosity is assumed for the flow analysis. The impact of chemical reaction and heat generation coefficient is used to examine the mass and heat transferal rates. The investigation of non-Newtonian fluid flow over an oscillating surface is crucial for a wide range of industrial, biomedical, and scientific applications. The governing model of equations occurs in the form of nondimensional PDEs and then we use the dimensionless variables in order to achieve the dimensional PDEs. These equations are numerically solved by using the Crank–Nicolson technique. The Crank–Nicolson scheme is used because it has the ability to provide accurate and stable solutions and make it a valuable numerical technique in various scientific and engineering disciplines. The findings indicate the significance of numerous parameters on the mass, velocity and energy regions. The numerical outcomes of skin friction are observed due to fluid parameter, viscosity parameter, Grashof numbers of heat and solutal rates.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3