Author:
Bonaldi Francesco,Di Pietro Daniele A.,Geymonat Giuseppe,Krasucki Françoise
Abstract
We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems arising from the mechanical modeling of the bending behavior of Kirchhoff–Love plates, including the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approximation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations locally inside each element. When polynomials of degree k ≥ 1 are used as unknowns, we prove convergence in hk+1 (with h denoting, as usual, the meshsize) in an energy-like norm. A key ingredient in the proof are novel approximation results for the energy projector on local polynomial spaces. Under biharmonic regularity assumptions, a sharp estimate in hk+3 is also derived for the L2-norm of the error on the deflection. The theoretical results are supported by numerical experiments, which additionally show the robustness of the method with respect to the choice of the stabilization.
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献