Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations

Author:

Aghili Joubine1,Boyaval Sébastien2,Di Pietro Daniele A.1

Affiliation:

1. 1Université de Montpellier, I3M, 34057 Montpellier CEDEX 5, France

2. 2Laboratoire d'hydraulique Saint-Venant (Ecole des Ponts ParisTech – EDF R&D – CEREMA), Université Paris Est and INRIA Rocquencourt (MATHERIALS), France

Abstract

AbstractThis paper presents two novel contributions on the recently introduced Mixed High-Order (MHO) methods [`Arbitrary order mixed methods for heterogeneous anisotropic diffusion on general meshes', preprint (2013)]. We first address the hybridization of the MHO method for a scalar diffusion problem and obtain the corresponding primal formulation. Based on the hybridized MHO method, we then design a novel, arbitrary order method for the Stokes problem on general meshes. A full convergence analysis is carried out showing that, when independent polynomials of degree k are used as unknowns (at elements for the pressure and at faces for each velocity component), the energy-norm of the velocity and the L2-norm of the pressure converge with order (k + 1), while the L2-norm of the velocity (super-)converges with order (k + 2). The latter property is not shared by other methods based on a similar choice of unknowns. The theoretical results are numerically validated in two space dimensions on both standard and polygonal meshes.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3